Package: survML 1.2.0.9000

survML: Tools for Flexible Survival Analysis Using Machine Learning

Statistical tools for analyzing time-to-event data using machine learning. Implements survival stacking for conditional survival estimation, standardized survival function estimation for current status data, and methods for algorithm-agnostic variable importance. See Wolock CJ, Gilbert PB, Simon N, and Carone M (2024) <doi:10.1080/10618600.2024.2304070>.

Authors:Charles Wolock [aut, cre, cph], Avi Kenny [ctb]

survML_1.2.0.9000.tar.gz
survML_1.2.0.9000.zip(r-4.5)survML_1.2.0.9000.zip(r-4.4)survML_1.2.0.9000.zip(r-4.3)
survML_1.2.0.9000.tgz(r-4.4-any)survML_1.2.0.9000.tgz(r-4.3-any)
survML_1.2.0.9000.tar.gz(r-4.5-noble)survML_1.2.0.9000.tar.gz(r-4.4-noble)
survML_1.2.0.9000.tgz(r-4.4-emscripten)survML_1.2.0.9000.tgz(r-4.3-emscripten)
survML.pdf |survML.html
survML/json (API)
NEWS

# Install 'survML' in R:
install.packages('survML', repos = c('https://cwolock.r-universe.dev', 'https://cloud.r-project.org'))

Peer review:

Bug tracker:https://github.com/cwolock/survml/issues

On CRAN:

8.03 score 15 stars 1 packages 75 scripts 403 downloads 14 exports 86 dependencies

Last updated 11 days agofrom:7848ddd46c. Checks:OK: 7. Indexed: yes.

TargetResultDate
Doc / VignettesOKNov 12 2024
R-4.5-winOKNov 12 2024
R-4.5-linuxOKNov 12 2024
R-4.4-winOKNov 12 2024
R-4.4-macOKNov 12 2024
R-4.3-winOKNov 12 2024
R-4.3-macOKNov 12 2024

Exports:crossfit_oracle_predscrossfit_surv_predscurrstatCIRDR_pseudo_outcome_regressiongenerate_foldsstackGstackLvimvim_accuracyvim_AUCvim_briervim_cindexvim_rsquaredvim_survival_time_mse

Dependencies:abindassertthatbitopscaToolsChernoffDistclicodetoolscolorspacecpp11cvAUCdata.tabledigestdplyrfansifarverfdrtoolforeachFormulafurrrfuturefuture.applygamgenericsggplot2glmnetglobalsgluegplotsgslgtablegtoolshal9001haldensifyinumIsoisobanditeratorsKernSmoothlabelinglatticelibcoinlifecyclelistenvmagrittrMASSMatrixmatrixStatsmboostmgcvmunsellmvtnormnlmennlsorigamiparallellypartykitpillarpkgconfigpurrrquadprogR6rbibutilsRColorBrewerRcppRcppEigenRdpackrlangROCRrpartrsamplescalesshapesliderstabsstringistringrSuperLearnersurvivaltibbletidyrtidyselectutf8vctrsviridisLitewarpwithr

Assessing variable importance in survival analysis using machine learning

Rendered fromvariable_importance.Rmdusingknitr::rmarkdownon Nov 12 2024.

Last update: 2024-11-12
Started: 2024-10-26

Estimating a conditional survival function using off-the-shelf machine learning tools

Rendered fromconditional_survival.Rmdusingknitr::rmarkdownon Nov 12 2024.

Last update: 2024-10-28
Started: 2024-05-21

Estimating a covariate-adjusted survival function using current status data

Rendered fromcurrent_status.Rmdusingknitr::rmarkdownon Nov 12 2024.

Last update: 2024-10-30
Started: 2024-10-28