Package: survML (via r-universe)

September 10, 2024

Title Tools for Flexible Survival Analysis Using Machine Learning

Version 1.1.0.9000

Description Statistical tools for analyzing time-to-event data using machine learning. Implements survival stacking for conditional survival estimation, isotonic regression for current status data, and methods for algorithm-agnostic variable importance. See Wolock CJ, Gilbert PB, Simon N, and Carone M (2024) <doi:10.1080/10618600.2024.2304070>.

License GPL (>= 3)

Encoding UTF-8

LazyData true

Roxygen list(markdown = TRUE)

RoxygenNote 7.2.3

Depends SuperLearner (>= 2.0.28),

Imports Iso (>= 0.0.18.1), haldensify (>= 0.2.3), fdrtool (>= 1.2.17), ChernoffDist (>= 0.1.0), dplyr (>= 1.0.10)

Suggests knitr, rmarkdown, testthat (>= 3.0.0), ggplot2 (>= 3.4.0), gam (>= 1.22.0)

Config/testthat/edition 3

VignetteBuilder knitr

URL https://github.com/cwolock/survML,

https://cwolock.github.io/survML/

BugReports https://github.com/cwolock/survML/issues

Repository https://cwolock.r-universe.dev

RemoteUrl https://github.com/cwolock/survml

RemoteRef HEAD

RemoteSha 1bf52172b84e04a87df0c95c2323082129ddf17d

Contents

crossfit_oracle_preds	2
crossfit_surv_preds	3
currstatCIR	3
DR_pseudo_outcome_regression	4
stackG	5
stackL	8
vim_accuracy	11
vim_AUC	12
vim_brier	13
vim_cindex	14
vim_rmst_mse	15
vim_rsquared	17
	19
	•

Index

crossfit_oracle_preds Generate K-fold cross-fit survival predictions for downstream use

Description

Generate K-fold cross-fit survival predictions for downstream use

Usage

```
crossfit_oracle_preds(
  time,
  event,
  X,
  folds,
  nuisance_preds,
  pred_generator,
  ...
)
```

Value

data frame giving results

crossfit_surv_preds Generate K-fold cross-fit survival predictions for downstream use

Description

Generate K-fold cross-fit survival predictions for downstream use

Usage

```
crossfit_surv_preds(time, event, X, newtimes, folds, pred_generator, ...)
```

Value

data frame giving results

currstatCIR

Estimate a survival function under current status sampling

Description

Estimate a survival function under current status sampling

Usage

```
currstatCIR(
  time,
  event,
  W,
  SL_control = list(SL.library = c("SL.mean"), V = 5, method = "method.NNLS"),
  HAL_control = list(n_bins = c(5, 10), grid_type = c("equal_range", "equal_mass"), V =
    5),
  deriv_method = "m-spline",
  missing_method = "extended",
  eval_region,
  n_eval_pts = 101
)
```

time	n x 1 numeric vector of observed monitoring times
event	$n \ge 1$ numeric vector of status indicators of whether an event was observed prior to the monitoring time.
W	Dataframe of covariates
SL_control	List of Super Learner control parameters

HAL_control	List of haldensify control parameters
deriv_method	Method for computing derivative
missing_method	Method for handling nonresponse (extended CIR vs. complete case, just for testing)
eval_region	Region over which to estimate the survival function
n_eval_pts	Number of points in grid on which to evaluate survival function

Value

data frame giving results

DR_pseudo_outcome_regression Generate K-fold cross-fit survival predictions for downstream use

Description

Generate K-fold cross-fit survival predictions for downstream use

Usage

```
DR_pseudo_outcome_regression(
   time,
   event,
   X,
   newX,
   S_hat,
   G_hat,
   newtimes,
   approx_times,
   SL.library
)
```

Value

data frame giving results

stackG

Description

Estimate a conditional survival function using global survival stacking

Usage

```
stackG(
  time,
  event = rep(1, length(time)),
  entry = NULL,
 Х,
  newX = NULL,
 newtimes = NULL,
 direction = "prospective",
  time_grid_fit = NULL,
  bin_size = NULL,
  time_basis,
  time_grid_approx = sort(unique(time)),
  surv_form = "PI",
  learner = "SuperLearner",
 SL_control = list(SL.library = c("SL.mean"), V = 10, method = "method.NNLS", stratifyCV
    = FALSE),
  tau = NULL
)
```

time	$n \ge 1$ numeric vector of observed follow-up times If there is censoring, these are the minimum of the event and censoring times.
event	n x 1 numeric vector of status indicators of whether an event was observed. Defaults to a vector of 1s, i.e. no censoring.
entry	Study entry variable, if applicable. Defaults to NULL, indicating that there is no truncation.
Х	n x p data.frame of observed covariate values on which to train the estimator.
newX	$m \times p$ data.frame of new observed covariate values at which to obtain m predictions for the estimated algorithm. Must have the same names and structure as X.
newtimes	$k \ge 1$ numeric vector of times at which to obtain k predicted conditional survivals.
direction	Whether the data come from a prospective or retrospective study. This deter- mines whether the data are treated as subject to left truncation and right censor- ing ("prospective") or right truncation alone ("retrospective").

time_grid_f	it Named list of numeric vectors of times of times on which to discretize for esti- mation of cumulative probability functions. This is an alternative to bin_size and allows for specially tailored time grids rather than simply using a quan- tile bin size. The list consists of vectors named F_Y_1_grid, F_Y_0_grid, G_W_1_grid, and G_W_0_grid. These denote, respectively, the grids used to estimate the conditional CDF of the time variable among uncensored and cen- sored observations, and the grids used to estimate the conditional distribution of the entry variable among uncensored and censored observations.
bin_size	Size of time bin on which to discretize for estimation of cumulative probability functions. Can be a number between 0 and 1, indicating the size of quantile grid (e.g. 0.1 estimates the cumulative probability functions on a grid based on deciles of observed times). If NULL, creates a grid of all observed times.
time_basis	How to treat time for training the binary classifier. Options are "continuous" and "dummy", meaning an indicator variable is included for each time in the time grid.
time_grid_a	oprox
	Numeric vector of times at which to approximate product integral or cumulative hazard interval. Defaults to times argument.
surv_form	Mapping from hazard estimate to survival estimate. Can be either "PI" (product integral mapping) or "exp" (exponentiated cumulative hazard estimate).
learner	Which binary regression algorithm to use. Currently, only SuperLearner is supported, but more learners will be added. See below for algorithm-specific arguments.
SL_control	Named list of parameters controlling the Super Learner fitting process. These parameters are passed directly to the SuperLearner function. Parameters in- clude SL.library (library of algorithms to include in the binary classification Super Learner), V (Number of cross validation folds on which to train the Su- per Learner classifier, defaults to 10), method (Method for estimating coeffi- cients for the Super Learner, defaults to "method.NNLS"), stratifyCV (logical indicating whether to stratify by outcome in SuperLearner's cross-validation scheme), and obsWeights (observation weights, passed directly to prediction algorithms by SuperLearner).
tau	The maximum time of interest in a study, used for retrospective conditional survival estimation. Rather than dealing with right truncation separately than left truncation, it is simpler to estimate the survival function of tau - time. Defaults to NULL, in which case the maximum study entry time is chosen as the reference point.
Value	
A	
A named list of	of class stacks, with the following components:

- S_T_preds An m x k matrix of estimated event time survival probabilities at the m covariate vector values and k times provided by the user in newX and newtimes, respectively.
 S_C_preds An m x k matrix of estimated censoring time survival probabilities at the m co-
- variate vector values and k times provided by the user in newX and newtimes, respectively.

stackG

<pre>time_grid_appro</pre>	X
	The approximation grid for the product integral or cumulative hazard integral, (user-specified).
direction	Whether the data come from a prospective or retrospective study (user-specified).
tau	The maximum time of interest in a study, used for retrospective conditional survival estimation (user-specified).
surv_form	Exponential or product-integral form (user-specified).
time_basis	Whether time is included in the regression as continuous or dummy (user-specified)
SL_control	Named list of parameters controlling the Super Learner fitting process (user-specified).
fits	A named list of fitted regression objects corresponding to the constituent re- gressions needed for global survival stacking. Includes P_Delta (probability of event given covariates), F_Y_1 (conditional cdf of follow-up times given covari- ates among uncensored), F_Y_0 (conditional cdf of follow-up times given co- variates among censored), G_W_1 (conditional distribution of entry times given covariates and follow-up time among uncensored), G_W_0 (conditional distri- bution of entry times given covariates and follow-up time among uncensored). Each of these objects includes estimated coefficients from the SuperLearner fit, as well as the time grid used to create the stacked dataset (where applicable).

References

Wolock C.J., Gilbert P.B., Simon N., and Carone, M. (2024). "A framework for leveraging machine learning tools to estimate personalized survival curves."

Examples

```
# This is a small simulation example
set.seed(123)
n <- 500
X \leftarrow data.frame(X1 = rnorm(n), X2 = rbinom(n, size = 1, prob = 0.5))
S0 <- function(t, x){
  pexp(t, rate = exp(-2 + x[,1] - x[,2] + .5 * x[,1] * x[,2]), lower.tail = FALSE)
}
T \le rexp(n, rate = exp(-2 + X[,1] - X[,2] + .5 * X[,1] * X[,2]))
G0 <- function(t, x) \{
  as.numeric(t < 15) *.9*pexp(t,</pre>
                                rate = exp(-2 -.5*x[,1]-.25*x[,2]+.5*x[,1]*x[,2]),
                               lower.tail=FALSE)
}
C <- rexp(n, exp(-2 -.5 * X[,1] - .25 * X[,2] + .5 * X[,1] * X[,2]))
C[C > 15] <- 15
entry <- runif(n, 0, 15)
time <- pmin(T, C)</pre>
event <- as.numeric(T <= C)</pre>
```

stackL

```
sampled <- which(time >= entry)
X <- X[sampled,]
time <- time[sampled]</pre>
event <- event[sampled]</pre>
entry <- entry[sampled]</pre>
# Note that this a very small Super Learner library, for computational purposes.
SL.library <- c("SL.mean", "SL.glm")</pre>
fit <- stackG(time = time,</pre>
               event = event,
               entry = entry,
              X = X,
              newX = X,
              newtimes = seq(0, 15, .1),
              direction = "prospective",
              bin_size = 0.1,
               time_basis = "continuous",
               time_grid_approx = sort(unique(time)),
               surv_form = "exp",
              learner = "SuperLearner",
              SL_control = list(SL.library = SL.library,
                                  V = 5))
plot(fit$S_T_preds[1,], S0(t = seq(0, 15, .1), X[1,]))
abline(0,1,col='red')
```

stackL

Estimate a conditional survival function via local survival stacking

Description

Estimate a conditional survival function via local survival stacking

Usage

```
stackL(
   time,
   event = rep(1, length(time)),
   entry = NULL,
   X,
   newX,
   newtimes,
   direction = "prospective",
   bin_size = NULL,
   time_basis = "continuous",
   learner = "SuperLearner",
```

8

stackL

Arguments

)

time	n x 1 numeric vector of observed follow-up times If there is censoring, these are the minimum of the event and censoring times.
event	n x 1 numeric vector of status indicators of whether an event was observed. De- faults to a vector of 1s, i.e. no censoring.
entry	Study entry variable, if applicable. Defaults to NULL, indicating that there is no truncation.
Х	n x p data.frame of observed covariate values on which to train the estimator.
newX	m x p data.frame of new observed covariate values at which to obtain m predictions for the estimated algorithm. Must have the same names and structure as X .
newtimes	$k \ge 1$ numeric vector of times at which to obtain k predicted conditional survivals.
direction	Whether the data come from a prospective or retrospective study. This deter- mines whether the data are treated as subject to left truncation and right censor- ing ("prospective") or right truncation alone ("retrospective").
bin_size	Size of bins for the discretization of time. A value between 0 and 1 indicating the size of observed event time quantiles on which to grid times (e.g. 0.02 creates a grid of 50 times evenly spaced on the quantile scaled). If NULL, defaults to every observed event time.
time_basis	How to treat time for training the binary classifier. Options are "continuous" and "dummy", meaning an indicator variable is included for each time in the time grid.
learner	Which binary regression algorithm to use. Currently, only SuperLearner is supported, but more learners will be added. See below for algorithm-specific arguments.
SL_control	Named list of parameters controlling the Super Learner fitting process. These parameters are passed directly to the SuperLearner function. Parameters in- clude SL.library (library of algorithms to include in the binary classification Super Learner), V (Number of cross validation folds on which to train the Su- per Learner classifier, defaults to 10), method (Method for estimating coeffi- cients for the Super Learner, defaults to "method.NNLS"), stratifyCV (logical indicating whether to stratify by outcome in SuperLearner's cross-validation scheme), and obsWeights (observation weights, passed directly to prediction algorithms by SuperLearner).
tau	The maximum time of interest in a study, used for retrospective conditional survival estimation. Rather than dealing with right truncation separately than left truncation, it is simpler to estimate the survival function of tau - time. Defaults to NULL, in which case the maximum study entry time is chosen as the reference point.

Value

A named list of class stackL.

S_T_preds	An m x k matrix of estimated event time survival probabilities at the m covariate vector values and k times provided by the user in newX and newtimes, respectively.
fit	The Super Learner fit for binary classification on the stacked dataset.

References

Polley E.C. and van der Laan M.J. (2011). "Super Learning for Right-Censored Data" in Targeted Learning.

Craig E., Zhong C., and Tibshirani R. (2021). "Survival stacking: casting survival analysis as a classification problem."

Examples

```
# This is a small simulation example
set.seed(123)
n <- 500
X \leftarrow data.frame(X1 = rnorm(n), X2 = rbinom(n, size = 1, prob = 0.5))
S0 <- function(t, x){
  pexp(t, rate = exp(-2 + x[,1] - x[,2] + .5 * x[,1] * x[,2]), lower.tail = FALSE)
}
T \le rexp(n, rate = exp(-2 + X[,1] - X[,2] + .5 * X[,1] * X[,2]))
G0 <- function(t, x) \{
  as.numeric(t < 15) *.9*pexp(t,</pre>
                                 rate = exp(-2 -.5*x[,1]-.25*x[,2]+.5*x[,1]*x[,2]),
                                 lower.tail=FALSE)
}
C \le rexp(n, exp(-2 - .5 * X[,1] - .25 * X[,2] + .5 * X[,1] * X[,2]))
C[C > 15] <- 15
entry <- runif(n, 0, 15)</pre>
time <- pmin(T, C)</pre>
event <- as.numeric(T <= C)</pre>
sampled <- which(time >= entry)
X <- X[sampled,]</pre>
time <- time[sampled]</pre>
event <- event[sampled]</pre>
entry <- entry[sampled]</pre>
# Note that this a very small Super Learner library, for computational purposes.
SL.library <- c("SL.mean", "SL.glm")</pre>
fit <- stackL(time = time,</pre>
                event = event,
```

vim_accuracy Estimate classification accuracy VIM

Description

Estimate classification accuracy VIM

Usage

```
vim_accuracy(
   time,
   event,
   approx_times,
   landmark_times,
   f_hat,
   fs_hat,
   S_hat,
   G_hat,
   folds,
   sample_split,
   ss_folds,
   scale_est = FALSE,
   alpha = 0.05
```

)

time	$n \ge 1$ numeric vector of observed follow-up times If there is censoring, these are the minimum of the event and censoring times.
event	$n \ x \ 1$ numeric vector of status indicators of whether an event was observed. Defaults to a vector of 1s, i.e. no censoring.
approx_times	Numeric vector of length J1 giving times at which to approximate integrals.
landmark_times	Numeric vector of length J2 giving times at which to estimate accuracy

f_hat	Full oracle predictions (n x J1 matrix)
fs_hat	Residual oracle predictions (n x J1 matrix)
S_hat	Estimates of conditional event time survival function (n x J2 matrix)
G_hat	Estimate of conditional censoring time survival function (n x J2 matrix)
folds	Numeric vector of length n giving cross-fitting folds
<pre>sample_split</pre>	Logical indicating whether or not to sample split
ss_folds	Numeric vector of length n giving sample-splitting folds
scale_est	Logical, whether or not to force the VIM estimate to be nonnegative
alpha	The level at which to compute confidence intervals and hypothesis tests. Defaults to 0.05

Value

data frame giving results

vim_AUC

Estimate AUC VIM

Description

Estimate AUC VIM

Usage

```
vim_AUC(
  time,
  event,
  approx_times,
  landmark_times,
  f_hat,
  fs_hat,
  S_hat,
  G_hat,
  folds,
  sample_split,
  ss_folds,
  robust = TRUE,
  scale_est = FALSE,
  alpha = 0.05
)
```

vim_brier

Arguments

time	$n \ge 1$ numeric vector of observed follow-up times If there is censoring, these are the minimum of the event and censoring times.
event	$n \ge 1$ numeric vector of status indicators of whether an event was observed. Defaults to a vector of 1s, i.e. no censoring.
approx_times	Numeric vector of length J1 giving times at which to approximate integrals.
landmark_times	Numeric vector of length J2 giving times at which to estimate AUC
f_hat	Full oracle predictions (n x J1 matrix)
fs_hat	Residual oracle predictions (n x J1 matrix)
S_hat	Estimates of conditional event time survival function (n x J2 matrix)
G_hat	Estimate of conditional censoring time survival function (n x J2 matrix)
folds	Numeric vector of length n giving cross-fitting folds
sample_split	Logical indicating whether or not to sample split
ss_folds	Numeric vector of length n giving sample-splitting folds
robust	Logical, whether or not to use the doubly-robust debiasing approach. This option is meant for illustration purposes only — it should be left as TRUE.
scale_est	Logical, whether or not to force the VIM estimate to be nonnegative
alpha	The level at which to compute confidence intervals and hypothesis tests. Defaults to 0.05

Value

data frame giving results

vim_brier

Estimate Brier score VIM

Description

Estimate Brier score VIM

Usage

vim_brier(
 time,
 event,
 approx_times,
 landmark_times,
 f_hat,
 fs_hat,
 S_hat,
 G_hat,
 folds,

```
ss_folds,
sample_split,
scale_est = FALSE,
alpha = 0.05
)
```

Arguments

time	$n \ge 1$ numeric vector of observed follow-up times If there is censoring, these are the minimum of the event and censoring times.
event	$n \ x \ 1$ numeric vector of status indicators of whether an event was observed. Defaults to a vector of 1s, i.e. no censoring.
approx_times	Numeric vector of length J1 giving times at which to approximate integrals.
landmark_times	Numeric vector of length J2 giving times at which to estimate Brier score
f_hat	Full oracle predictions (n x J1 matrix)
fs_hat	Residual oracle predictions (n x J1 matrix)
S_hat	Estimates of conditional event time survival function (n x J2 matrix)
G_hat	Estimate of conditional censoring time survival function (n x J2 matrix)
folds	Numeric vector of length n giving cross-fitting folds
ss_folds	Numeric vector of length n giving sample-splitting folds
sample_split	Logical indicating whether or not to sample split
scale_est	Logical, whether or not to force the VIM estimate to be nonnegative
alpha	The level at which to compute confidence intervals and hypothesis tests. Defaults to 0.05

Value

data frame giving results

```
vim_cindex
```

Estimate concordance index VIM

Description

Estimate concordance index VIM

Usage

```
vim_cindex(
   time,
   event,
   approx_times,
   tau,
   f_hat,
```

vim_rmst_mse

```
fs_hat,
S_hat,
G_hat,
folds,
sample_split,
ss_folds,
scale_est = FALSE,
alpha = 0.05
```

Arguments

)

time	$n \ge 1$ numeric vector of observed follow-up times If there is censoring, these are the minimum of the event and censoring times.
event	$n \ge 1$ numeric vector of status indicators of whether an event was observed. Defaults to a vector of 1s, i.e. no censoring.
approx_times	Numeric vector of length J1 giving times at which to approximate integrals.
tau	restriction time
f_hat	Full oracle predictions (n x J1 matrix)
fs_hat	Residual oracle predictions (n x J1 matrix)
S_hat	Estimates of conditional event time survival function (n x J2 matrix)
G_hat	Estimate of conditional censoring time survival function (n x J2 matrix)
folds	Numeric vector of length n giving cross-fitting folds
sample_split	Logical indicating whether or not to sample split
ss_folds	Numeric vector of length n giving sample-splitting folds
scale_est	Logical, whether or not to force the VIM estimate to be nonnegative
alpha	The level at which to compute confidence intervals and hypothesis tests. Defaults to 0.05

Value

data frame giving results

vim_rmst_mse

Estimate restricted prediction time MSE VIM

Description

Estimate restricted prediction time MSE VIM

Usage

```
vim_rmst_mse(
   time,
   event,
   approx_times,
   tau,
   f_hat,
   fs_hat,
   S_hat,
   G_hat,
   folds,
   sample_split,
   ss_folds,
   scale_est = FALSE,
   alpha = 0.05
)
```

Arguments

time	n x 1 numeric vector of observed follow-up times If there is censoring, these are the minimum of the event and censoring times.
event	$n \ x \ 1$ numeric vector of status indicators of whether an event was observed. Defaults to a vector of 1s, i.e. no censoring.
approx_times	Numeric vector of length J1 giving times at which to approximate integrals.
tau	restriction time
f_hat	Full oracle predictions (n x J1 matrix)
fs_hat	Residual oracle predictions (n x J1 matrix)
S_hat	Estimates of conditional event time survival function (n x J2 matrix)
G_hat	Estimate of conditional censoring time survival function (n x J2 matrix)
folds	Numeric vector of length n giving cross-fitting folds
sample_split	Logical indicating whether or not to sample split
ss_folds	Numeric vector of length n giving sample-splitting folds
scale_est	Logical, whether or not to force the VIM estimate to be nonnegative
alpha	The level at which to compute confidence intervals and hypothesis tests. Defaults to 0.05

Value

data frame giving results

16

vim_rsquared

Description

Estimate Brier score VIM

Usage

```
vim_rsquared(
   time,
   event,
   approx_times,
   landmark_times,
   f_hat,
   fs_hat,
   S_hat,
   G_hat,
   folds,
   ss_folds,
   sample_split,
   scale_est = FALSE,
   alpha = 0.05
)
```

time	$n \ge 1$ numeric vector of observed follow-up times If there is censoring, these are the minimum of the event and censoring times.
event	$n \ x \ 1$ numeric vector of status indicators of whether an event was observed. Defaults to a vector of 1s, i.e. no censoring.
approx_times	Numeric vector of length J1 giving times at which to approximate integrals.
landmark_times	Numeric vector of length J2 giving times at which to estimate Brier score
f_hat	Full oracle predictions (n x J1 matrix)
fs_hat	Residual oracle predictions (n x J1 matrix)
S_hat	Estimates of conditional event time survival function (n x J2 matrix)
G_hat	Estimate of conditional censoring time survival function (n x J2 matrix)
folds	Numeric vector of length n giving cross-fitting folds
ss_folds	Numeric vector of length n giving sample-splitting folds
sample_split	Logical indicating whether or not to sample split
scale_est	Logical, whether or not to force the VIM estimate to be nonnegative
alpha	The level at which to compute confidence intervals and hypothesis tests. Defaults to 0.05

vim_rsquared

Value

data frame giving results

Index

crossfit_oracle_preds, 2
crossfit_surv_preds, 3
currstatCIR, 3

DR_pseudo_outcome_regression, 4

stackG, 5 stackL, 8

vim_accuracy, 11 vim_AUC, 12 vim_brier, 13 vim_cindex, 14 vim_rmst_mse, 15 vim_rsquared, 17